# Paediatric ACL injuries

Dr Christopher Spelman

## ACL injuries

- Increasing incidence with competitive sport
- F:M 4:1
- Surgical management depends on remaining growth



#### ACL Injuries – History and Examination

No isolated question, clinical test or imaging modality can accurately diagnose an ACL injury every time

### Key history points

- Mechanism of injury
  - Non-contact pivot or hyperextension injury
- Early haemarthrosis
- Ability to weight bear post
- Previous knee injuries
- Locking/catching/clicking
  - Meniscal pathology/OCD
- Age, menarche, growth velocity



#### Knee Examination

- Alignment
  - Valgus knee alignment predisposes to ACL tear
- Gait
  - Need for brace/walking aids
- Effusion/Haemarthrosis
- Palpation
- Range of motion
- Clicking/Catching/ Locking



- Always compare to contralateral side
- Children have more joint laxity than adults, difference between sides is more important than absolute figures

#### **Anterior drawer**

- Hip flexed to 45\*
- Knee flexed to 90\*
- Positive if >5mm difference to contralateral side
- 22.2% sensitivity and 95% specificity within 2 weeks
- 40.9% sensitivity and 98.4% specificity after 2 week



#### Lachman's Test

- Knee bent 20-30\*
- Positive if >2mm difference to contralateral side
- 77.7% sensitivity and >95% specificity with 2 weeks
- 84.6% sensitivity and >95% specificity after 2 weeks





- Varus Stress Test (LCL)
- Knee flexed to 30\*
- Knee full extension
  - ITB, Biceps Femoris, Arcuate complex, PLC
- Sensitivity 25%



#### **Pivot Shift Test**

- Knee in full extension
- Foot in internal rotation
- Axial load, valgus force
- Slowly bend knee, as ITB passes over femoral condyle it will reduce the subluxed tibia
- 36% sensitivity and 99% specificity with 2 weeks



#### ACL Injuries - Investigation

- Plain XRs Always required
- MRI Useful\*
- CT Bony injuries
- EOS All operative cases





#### Tibial Spine Avulsion

- Variant of ACL injuries
- Diagnosed on XR/CT
- Operative treatment for displaced injuries
- Non-operative Rx cylinder cast

#### ACL Injuries - MRI

- Always order locked knee
- Consider clinical suspicion of ACL or meniscal injury
- Not required
- Tibial eminence avulsion, most bony injuries



#### ACL Injuries - Management

- Preventative FIFA 11+ for kids
- Non-operative focused physiotherapy
  - Dynamic, multijoint neuromuscular control
- Operative age dependent



## ACL Injuries – Indications for surgery

- 1. The child has repairable associated injuries that require surgery (eg, bucket-handle meniscus tear, repairable meniscal lesion or osteochondral defect).
- 2. The child has recurrent, symptomatic knee giving way after completing high-quality rehabilitation.
- 3. The child experiences unacceptable participation restrictions (ie, an unacceptable modification of activity level to avoid knee giving way).

IOC consensus statement 2018 Paediatric ACL injuries

#### ACL Injuries – Natural History

- ACL injuries have low rates of return to competitive sport
- No long term studies on OA (Adults symptomatic OA in 10 years)
- High rates of subsequent meniscal injuries (2%/month)



#### ACL Injuries – Associated injuries

- Meniscal tear 58%
  - Increase by 12% for every 2 BMI points over 25
  - Increase by 16% for every year of age over 10

Rates of Concomitant Meniscal Tears in Pediatric Patients With Anterior Cruciate Ligament Injuries Increase With Age and Body Mass Index

Crystal A. Perkins,\*<sup>†</sup> MD, Melissa A. Christino,<sup>‡</sup> MD, Michael T. Busch,<sup>†</sup> MD, Anthony Egger,<sup>†</sup> MD, Asahi Murata,<sup>†</sup> BS, Michael Kelleman,<sup>§</sup> MSPH, and S. Clifton Willimon,<sup>†</sup> MD *Investigation performed at Children's Healthcare of Atlanta, Atlanta, Georgia, USA* 



#### ACL Injuries - Diagnosis

| Table 1 Diagnostic accuracy of clinical examination and MRI in intra-articular knee disorders (adapted from Kocher et al <sup>27</sup> ) |                      |      |         |                         |      |         |                               |      |                        |                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|---------|-------------------------|------|---------|-------------------------------|------|------------------------|-------------------------------|--|
|                                                                                                                                          | Sensitivity (%)      |      |         | Specificity (%)         |      |         | Positive predictive value (%) |      | Negative pr            | Negative predictive value (%) |  |
| Diagnosis                                                                                                                                | Clinical examination | MRI  | P value | Clinical<br>examination | MRI  | P value | Clinical examination          | MRI  | Clinical<br>examinatio | n MRI                         |  |
| ACL tear                                                                                                                                 | 81.3                 | 75.0 | 0.55    | 90.6                    | 94.1 | 0.39    | 49.0                          | 58.6 | 97.8                   | 97.1                          |  |
| Medial meniscus tear                                                                                                                     | 62.1                 | 79.3 | 0.15    | 80.7                    | 92.0 | 0.03    | 14.5                          | 34.3 | 97.6                   | 98.8                          |  |
| Lateral meniscus tear                                                                                                                    | 50.0                 | 66.7 | 0.24    | 89.2                    | 82.8 | 0.21    | 34.0                          | 30.1 | 94.1                   | 95.7                          |  |

Clinical examination was patient history, physical examination and X-rays performed by a paediatric orthopaedic sports medicine specialist or a postresidency paediatric sports medicine follow

1.Kocher MS , DiCanzio J , Zurakowski D , et al

. Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 2001;29:292–6. doi:10.1177/03635465010290030601

#### Surgical Management

 Based on skeletal age and associated injuries



#### ACL Injuries – Over the top reconstruction

- Young children
- Non-anatomic
- Strip of ITB re-routed through the knee and fixed to proximal tibia





A. Anterior view

B. Lateral view

## ACL Injuries – Physeal Sparing

- Boys 10-14, Girls 10-12
- Drill holes avoiding physis
- Higher re-rupture rate than anatomical ACL reconstruction





A. Anterior view

**B.** Lateral view

#### ACL Injuries – Transphyseal Reconstruction

- Within 2 years of skeletal maturity
- Similar to adult ACL recon
- Steeper tunnels
- Suspensory fixation
- Hamstrings graft



A. Anterior view



B. Lateral view

#### ACL Injuries – Technique points

- Minimise growth disturbance
- Avoid the perichondral ring
- Central, steep tunnels



#### ACL Injuries – Surgical risks

- Growth disturbance
- Re-injury (ipsilateral 13%, contralateral 14%)
- Stiffness
- Infection



#### Post-op

- Swelling control, ice packs
- ROM focussing on full extension as 1<sup>st</sup> goal
- Gentle cycling from 6 weeks
  - Risk of graft stretching before 12 weeks
- Jogging from 4 months

- Return to sport minimum 12 months
- Triple hop >90% contralateral
- Muscle strength >90% contralateral

Take home points

- Always get an XR
- Clinical examination is important, but less reliable than adults
- MRI better to exclude pathology rather than diagnose
- Surgical management based on remaining growth

## Thank you

#### ACL rehab & return to sport protocol

Recommended functional tests and return to sport criteria for the child and adolescent with ACL injury

- For patients who choose ACL reconstruction
- Prehabilitation
- Full active extension and at least 120 degrees active knee flexion
- Little to no effusion
- · Ability to hold terminal knee extension during single leg standing
- For adolescents: 90% limb symmetry on muscle strength tests

#### For patients who choose ACL reconstruction OR non-surgical treatment

- Phase I to phase II
- Full active knee extension and 120 degrees active knee flexion
- Little to no effusion
- Ability to hold terminal knee extension during single leg standing

- Phase II to phase III
- Full knee range of motion
- 80% limb symmetry on single-leg hop tests, with adequate landing strategies
- Ability to jog for 10 min with good form and no subsequent effusion
- For adolescents: 80% limb symmetry on muscle strength tests
- Phase III to phase IV: sport participation (return to sport criteria), and continued injury prevention
- Single-leg hop tests: >90% of the contralateral limb (with adequate strategy and movement quality)
- Performed gradual increase in sport-specific training without pain and effusion
- Confident in knee function
- Knowledge of high injury-risk knee positioning, and ability to maintain low-risk knee positioning in advanced sport-specific actions
- Mentally ready to return to sport
- For adolescents: 90% limb symmetry on muscle strength tests
- Muscle strength testing should be performed using isokinetic dynamometry or handheld dynamometry/one repetition maximum. The type of test and experience of the tester are highly likely to influence the results. If using handheld dynamometry/one repetition maximum, consider increasing the limb symmetry criterion cut-off by 10% (ie, 90% limb symmetry becomes 100% limb symmetry). Clinicians who do not have access to appropriate strength assessment equipment should consider referring the patient elsewhere for strength evaluation.