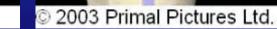
THE ROTATOR CUFF the science behind the disease

Jerome Goldberg

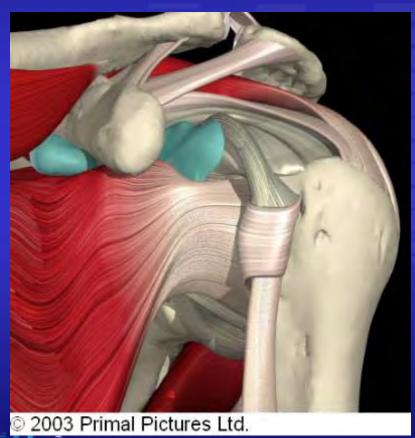
www.orthosports.com.au

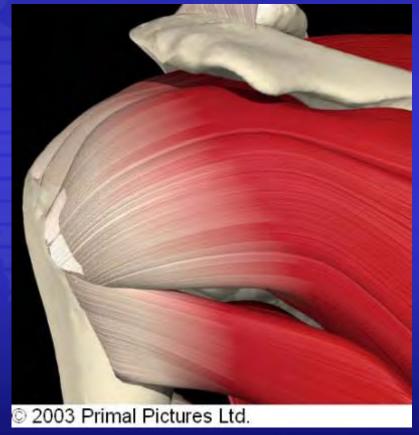
29-31 Dora Street, Hurstville 160 Belmore Road, Randwick

What do we know

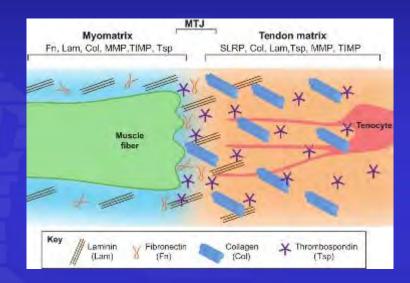

- Many older people have RC tears
- Many people with RC tears have no pain and full or near full function
- Non operative management gives good outcome in many
- Risk of developing arthritis small

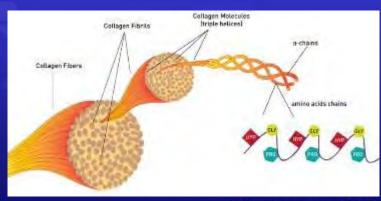
- Surgery fails to repair the RC in up to 40% of cases yet many of those have no pain and good function
- Larger tears will get bigger with time


ANATOMY



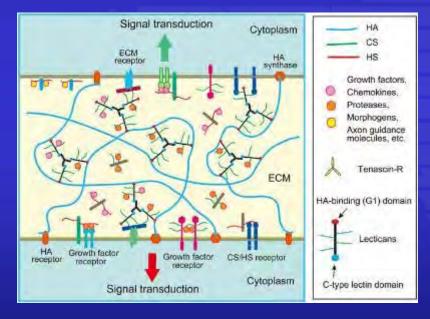
ANATOMY

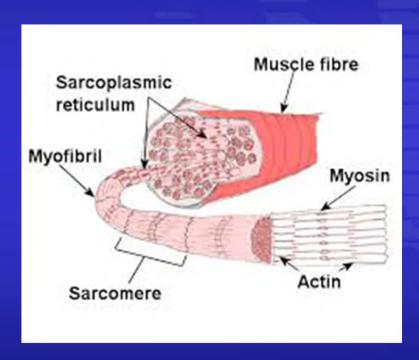




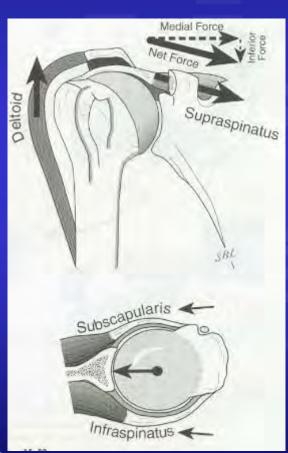
TENDON ULTRASTRUCTURE

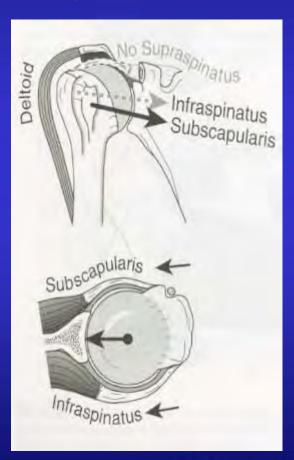
2 components


- Cells
 - Tenocytes
 - Tenoblasts
- ECM
 - Collagen (70%) mainly T1
 - Elastin
 - Proteoglycans
 - GAGs
 - water

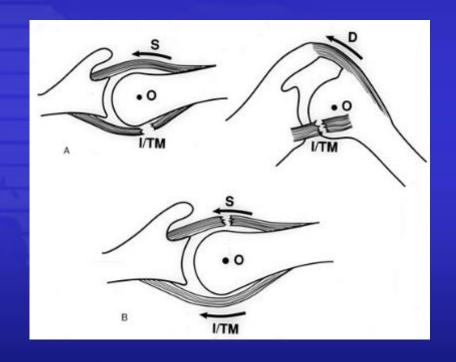

TENDON ULTRASTUCTURE

Bone Tendon/Ligament Junction Fibroblast Zone 1 Collagen fibril-Tendon/Ligament Fibrochondrocyte Zone 2 Unmineralized Progressive Fibrocartilage mineralization. Zone 3 Mineralized Mineralized fibrocartilage -Fibrocartilage (Sharpey's fibers) Zone 4 Bone Bone


MUSCLE ULTRASTUCTURE



BIOMECHANICS balance force couples



CLINICAL IMPLICATIONS

Normal function will occur with unrepaired R.C. tears when

Force couples intact
 (humeral head can be kept adjacent to glenoid)

if pain relief can be achieved

INCIDENCE OF RC TEARS

- 10% to 40% of 60 year olds have R.C. tears
- 50% to 75% of 70 year olds have RC tears MOST ARE ASYMPTOMATIC.

AUTHOR	NUMBER OF SHOULDERS	MALES FEMALES	AGE (YEARS)	FULL-THICKNESS RUPTURES (%)	AGE OF YOUNGEST WITH FULL-THICKNESS RUPTURES
Codman and Ackerson® (1934)	200	72/28	46 to over 80	16.5	_
Skinner41 (1937)	100) = =)	6	55
Grant and Smith® (1948)	190	85/10	17-86	19	47
DePalma ⁴⁷ (1950)	96	36/14	18-74	9	40-50
Olsson ⁵⁶ (1953)	106	28/25	25-88	8	57
Petersson ⁵³ (1983)	250	69-57	18-93	14.5	60
Fukuda ⁵² (1986)	249		-	7	
Neer (unpublished) (1965, 1973)	212	Second	40-85	7	40-50
Satterlee and Dalsey ⁵⁹	62	_	_	9	_

EPIDEMIOLOGY

Minagawa (J Orthop 2013)

full thickness tears in single village

- 0% under 50 yrs
- 11% 50 yrs to 59 yrs
- 15% 60 yrs to 69yrs
- 27% 70 yrs to 79yrs
- 37% 80 yrs to 89 yrs
- 35% symptomatic
- 65% asymptomatic

EPIDEMIOLOGY

Yamamoto (JSES 2015)

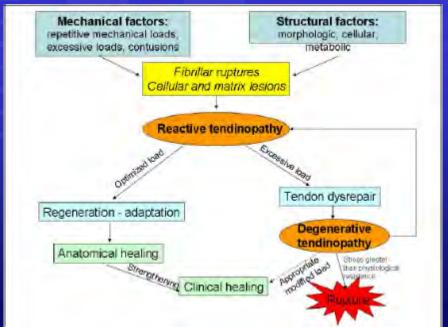
- Observed 464 people without RC tears for 3.5 yrs
- In 3.5 yrs 30 (6%) developed
 F/T RC tears

EPIDEMIOLOGY

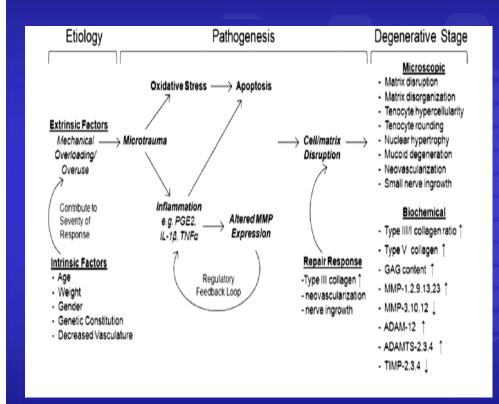
Risk Factors

- Smoking (dose & time dependent)
- Diabetes
- Cholesterol
- Alcohol intake
- ? NSAIDs

"I'll have to do some x-rays to be sure, but I'm guessing you dislocated your shoulder."

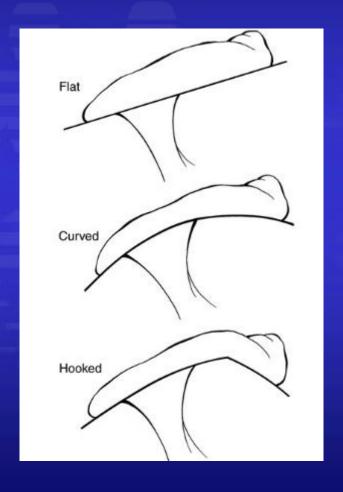


MECHANICAL

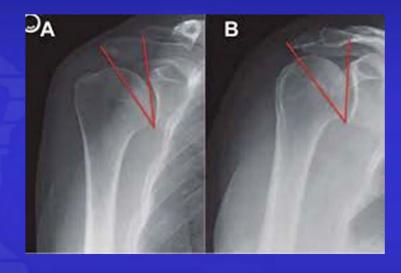

- Acromial shape
- Distal clavicular hook
- MECHANICAL OVERLOAD
- trauma

BIOLOGICAL

- complex
- Tendon inflammation
- Tendon/muscle degeneration



- Loading & age → ↑T3 collagen
 via gene expression
- Tenocyte apoptosis
- Loss of blood supply
- Matrix metalloproteases ratio changes (control ECM) + other enzyme/protein changes→ degradation of ECM
- Rupture RC
- Muscle retraction → atrophy → fatty infiltration



CRITICAL SHOULDER ANGLE

- > 35 ° RC tear
 - − ↑ superior shear force to RC
 - Requires 44% more SS muscle activity
 - Causes SS overload
- < 20° OA

CSA > 38° 15X higher risk of retear after RC repair ? Lateral acromionectomy

SYMPTOMS

- Pain with movement
- Pain at night
- Loss of movement
- Loss of power

SIGNS

- wasting
- RC tenderness
- Loss of movement
- Loss of power
- + impingment sign

Shoulder Surgery

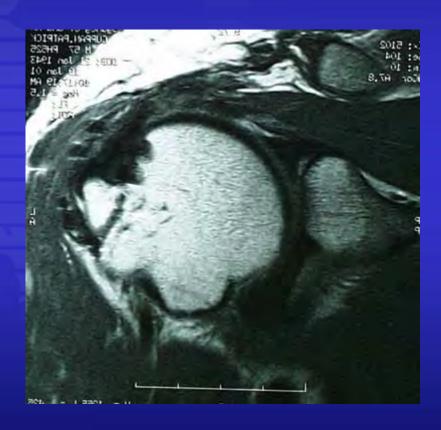
RADIOLOGY

- Xray
- Ultrasound
- MRA

TREATMENT OPTIONS

NON OPERATIVE

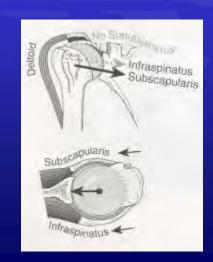
- Cortisone injections
- PRP injections
- NSAIDs
- Physio
- Activity modification


OPERATIVE

- Arthroscopic surgery
- Open/miniopen surgery
- Grafts
- Superior capsular reconstruction
- RTSR

WHO NEEDS SURGERY

- Young patients
- Active patients
- Poor ROM
- Significant power loss



WHO NEEDS NONOPERATIVE TREATMENT

- Older patients
- Low demand patients
- Balanced force couples

RESULTS OF NON OP TREATMENT

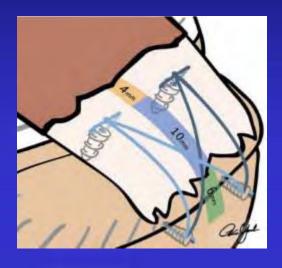
• ITOI (clin orthop 275;165, 1992)

83% good or excellent

• BROWN (JBJS 31B; 423,1949)

87% good

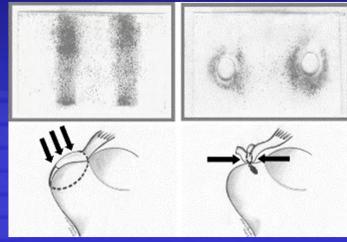
• TAKAGISHI (J. jpn orth assn 52; 1978)
44% good


HAWKINS (clin orthop 321;178,1995)58% satisfactory

Conclusion – the smaller the tear the better the outcome

ARTHROSCOPIC SURGERY

- Single row
- Double row
- + acromioplasty
- + biceps surgery



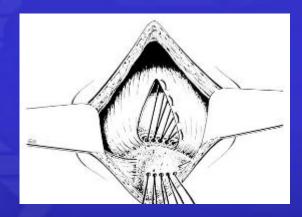
ARTHROSCOPIC ISSUES

- Single row vs double row
- Vascular issues

RESULTS

- ~ 60 % heal
- ~ 90% have good/excellent results
- Shoulders are NEVER normal

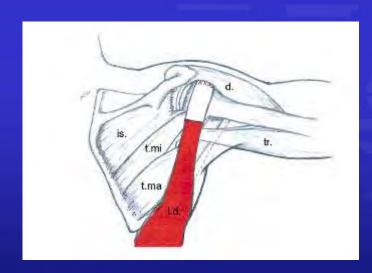
Poor results


- Smokers
- Diabetics
- Larger tears
- Chronic tears
- Older patients

RESULTS OF OPERATIVE TREATMENT

- SONNABEND (jses 3;201, 2002)
 710 open cases only, 88%
 patients satisfied
- BOILEAU (arth 23;4, 2007)
 597 arthroscopic cases only,
 94% excellent results, but only
 75% of cuffs repaired on
 arthrogram

Operative treatment fails because of failure of RC healing capacity – POOR BIOLOGY



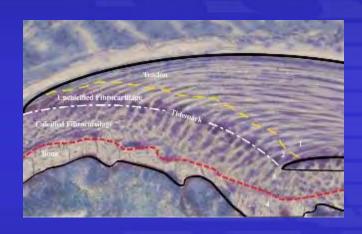
Conclusion – 80% to 90% patients happy but RC repair is intact in only 60% to 80% of cases with the smaller tears having good technical repairs and the larger tears more likely to fail

OPEN/MINI OPEN SURGERY

- +/- graft
- LD transfer

SUPERIOR CAPSULAR RECONSTRUCTION

- Younger patients
- Massive tear
- Recurrent tears

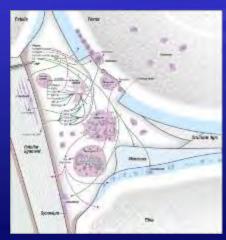

REVERSE TSR

- Massive tears
- Older patients
- Significant pain and functional loss

TENDON HEALING

Encourage mineralisation of calcified fibrocartilage layer

- Structural strength –
 50% normal
- Material quality –
 10% to 20% normal


SHOULD
PATIENTS GO
BACK TO
HEAVY WORK
OR SPORTS???

THE FUTURE

BIOLOGICALLY ACTIVE SUBSTANCE

- PRP
- Growth factors (BMPs & other GFs)
 - Direct insertion
 - Gene therapy
- Stem cells

DELIVERY METHOD

- Inject SA space GF disappear too quickly
- Inject tendon can damage healing tendon
- Use scaffold technically difficult & FB reaction

Dr Jerome Goldberg Shoulder Surgery

THANK YOU

