Low Back Pain in the Adolescent Athlete

www.orthosports.com.au

160 Belmore Road, Randwick

Athletic Load & Risk Context

- Growth spurts + repetitive extension/rotation
- ↑ lumbar load
- High risk: cricket fast bowling, gymnastics, diving, throwing
- Younger age, taller height, greater bowling
 frequency = ↑ risk

Major Causes of LBP in Adolescent Athletes

- Pars BSI (leading cause)
- Lumbar disc herniation (rare, ~0.1–0.2%)
- Facet-related pain (synovitis/arthropathy)
- Other: posterior apophyseal ring injury,
 Scheuermann, SIJ, infection/tumour

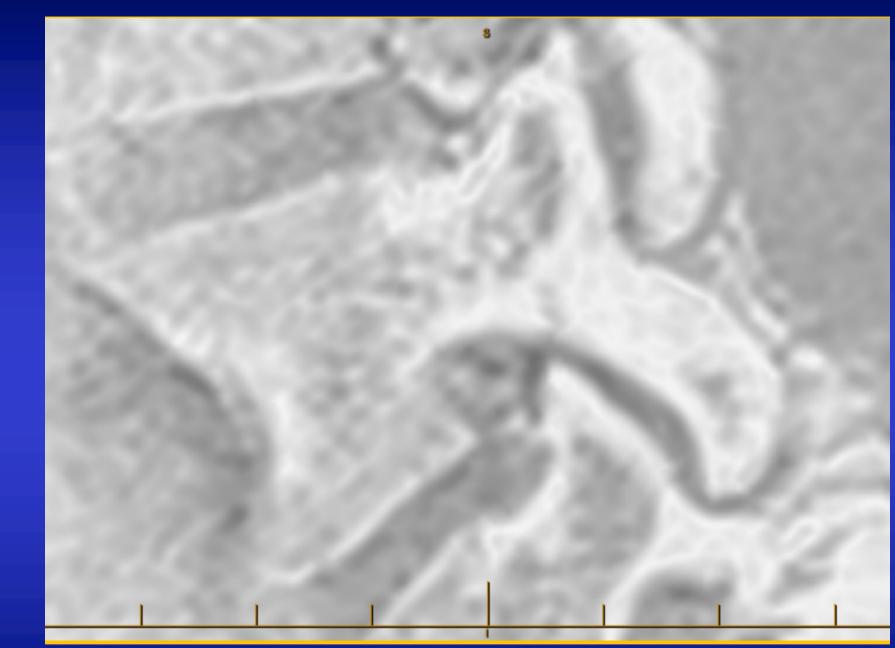
History & Examination

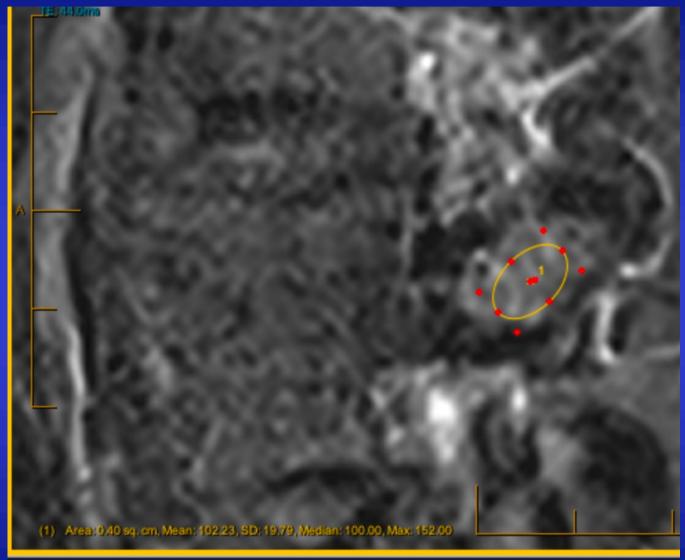
- Age, training hx, weekly volume, specialisation
- Hip & SIJ screen
- Full neurological exam
- Quadrant (Kemp's) test
- Stork test

Red Flags & Imaging Indications

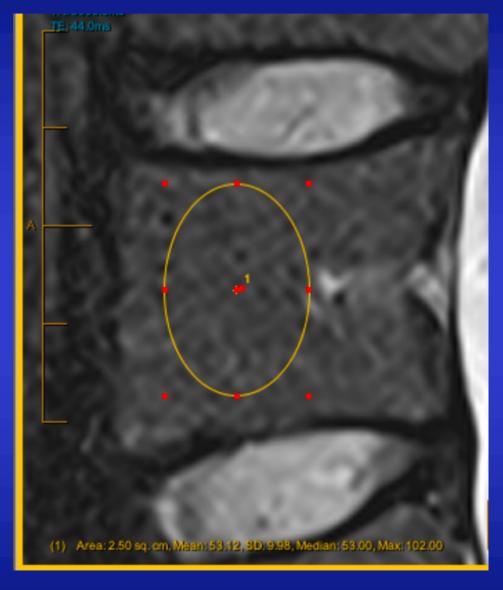
- Night/constant pain, systemic symptoms
- Neurological deficits
- Infection risk or trauma
- >4 weeks despite care → image/refer

Risks if BSI Missed


- Complete fracture, non-union
- Contralateral stress fracture
- Progression to spondylolisthesis


Imaging Approach

- Avoid routine imaging unless red flags
- MRI (STIR + 3D T1-VIBE) preferred over CT
- STIR: oedema = active lesion
- VIBE: fracture line delineation



MRI LUMBAR SPINE

Reason for MRI	Asympto	matic MRI (sc	creening)			
Test Type	STIR					
Lumbar level - Left	T12	L1	L2	L3	L4	L5
Bone oedema pars - Left			99	132	130	134
Bone oedema vertebral body - Left			65	66	72	64
Bone oedema ratio - Left			1.52	2	1.81	2.09
Lumbar level - Right	T12	L1	L2	L3	L4	
Bone oedema pars - Right			79	95	101	115
Bone oedema vertebral body - Right			65	66	72	64
Bone oedema ratio - Right			1.22	1.44	1.4	1.8
Cortical breach visible on Vibe?	No					
Cortical breach visible	T12	L1	L2	L3	L4	L5
Left	No	No	No	No	No	No
Right	No	No	No	No	No	No

Prescribing Load Using MRI

- Match load to STIR oedema severity
- Serial MRI to confirm healing trajectory
- Symptom + imaging-based progression

Management – Pars BSI

- Early recognition critical
- Off-load from extension/rotation
- Short-term brace if required
- Rehab: trunk endurance, hip-pelvic control
- Surgery only for persistent non-union

Follow-Up & Monitoring

- Review ~6 weeks
- Repeat MRI selectively (8–12 weeks if slow)
- Expect STIR reduction, VIBE signal normalisation
- Timeframe may be 6-12 months

Workload & Prevention

- Follow Cricket Australia Junior Fast-Bowling Guidelines
- Avoid consecutive heavy-load days
- Regular low-load & off weeks
- Gradual pre-season progression

Practical Clinical Pathway

- Triage red flags → consider pars early
- MRI (STIR + VIBE) if needed
- Stage injury + graded rehab
- Criteria-based RTP: ADLs → sport → training
- → match

- American College of Radiology. ACR Appropriateness Criteria®: Back Pain—Child. Latest update 2024/2025 (JACR/ACR narrative).
- NICE CKS. Back pain in children—Management. Last revised September 2024.
- Selhorst M, Fischer A, MacDonald J. Prevalence of Spondylolysis in Symptomatic Adolescent Athletes. *Clin J Sport Med*. 2019;29(5):396–401.
- Kountouris A, Sims K, Beakley D, et al. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. *Br J Sports Med*. 2019;53(19):1236–1243.
- Sims K, Saw R, Saw A, Kountouris A, Orchard J. Multiple risk factors associated with lumbar bone stress injury in youth cricket fast bowlers. *J Sport & Exercise Science NZ*. 2021;5(2):92–100.
- Ang EC, et al. Diagnostic accuracy of 3-T MRI with thin-slice 3D T1-VIBE versus CT in pars stress fractures. *Skeletal Radiol*. 2016;45:—.
- Sairyo K, et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents. *Spine (Phila Pa 1976)*. 2006;31(2):206–211.
- Masci L, et al. Use of the one-legged hyperextension test and MRI in the diagnosis of active spondylolysis. *Br J Sports Med.* 2006;40(11):940–946.
- Stuber KJ, et al. Diagnostic accuracy of the Kemp's (quadrant) test: systematic review. *J Can Chiropr Assoc*. 2014;58(3):258–267.
- Tarukado K, et al. Pediatric herniated lumbar disc: population-based risk factor analysis. *J Neurosurg Pediatr*. 2020;25(3):311–319.
- Peebles A, et al. Return to Play in Adolescent Athletes With Symptomatic Spondylolysis: Metaanalysis. *Sports Health*. 2018;10(5):—.
- Cricket Australia / Cricket NSW. Junior Fast-Bowling Guidelines (Season 2023–24): overs per spell/day, rest, weekly caps, pre-season build, recovery cycles, ball targets.

